Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Summer;2(2):157-75.
doi: 10.1089/ars.2000.2.2-157.

Links between cell-surface events involving redox-active copper and gene regulation in the hemopexin heme transport system

Affiliations
Review

Links between cell-surface events involving redox-active copper and gene regulation in the hemopexin heme transport system

A Smith. Antioxid Redox Signal. 2000 Summer.

Abstract

Heme is considered to play an instrumental role in the pathology of hemolysis, trauma, and reperfusion following ischemia. However, data are sparse and experimental models are required. The transport of heme by hemopexin to tissues is a specific, membrane receptor-mediated process. Hemopexin recycles after endocytosis like transferrin. Heme oxygenase-1 (HO-1), transferrin, the transferrin receptor, and ferritin are regulated by heme-hemopexin. Genes that encode proteins important for cellular defenses against oxidative stress, such as the cysteine-rich metallothioneins (MTs), are also activated by hemopexin, as are proteins that regulate cell cycle control including p21WAF1 and the tumor suppressor p53. The hemopexin system is being investigated to establish how intracellular events are affected by signal(s) from the plasma membrane due to hemopexin receptor occupancy and heme transport. A transient oxidative modification of proteins, shown by carbonyl production, takes place. Redox processes at the cell surface, which generate cuprous ions, are involved in the regulation of the MT-1 and HO-1 genes by heme-hemopexin before heme catabolism and intracellular release of iron. The "redox-sensitive" transcription factors activated by the hemopexin system include c- Jun, RelA/NFkappaB and MTF-1. The specific copper chelator bathocuproine disulfonate prevents carbonyl production, the nuclear translocation of MTF-1, and the induction of MT-1 revealing a novel, pivotal role for copper in the hemopexin system. In addition, surface redox-active copper is the first link shown for the concomitant regulation of HO-1 and MT-1 and is required for the activation of the amino-terminal c-Jun kinase (JNK) by heme-hemopexin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources