Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Summer;2(2):213-30.
doi: 10.1089/ars.2000.2.2-213.

Plasma membrane redox system in the control of stress-induced apoptosis

Affiliations
Review

Plasma membrane redox system in the control of stress-induced apoptosis

J M Villalba et al. Antioxid Redox Signal. 2000 Summer.

Abstract

The plasma membrane of animal cells contains an electron transport system based on coenzyme Q (CoQ) reductases. Cytochrome b5 reductase is NADH-specific and reduces CoQ through a one-electron reaction mechanism. DT-diaphorase also reduces CoQ, although through a two-electron reaction mechanism using both NADH and NADPH, which may be particularly important under oxidative stress conditions. Because reduced CoQ protects membranes against peroxidations, and also maintains the reduced forms of exogenous antioxidants such as alpha-tocopherol and ascorbate, this molecule can be considered a central component of the plasma membrane antioxidant system. Stress-induced apoptosis is mediated by the activation of plasma membrane-bound neutral sphingomyelinase, which releases ceramide to the cytosol. Ceramide-dependent caspase activation is part of the apoptosis pathway. The reduced components of the plasma membrane antioxidant system, mainly CoQ, prevent both lipid peroxidation and sphingomyelinase activation. This results in the prevention of ceramide accumulation and caspase 3 activation and, as consequence, apoptosis is inhibited. We propose the hypothesis that antioxidant protective function of the plasma membrane redox system can be enough to protect cells against the externally induced mild oxidative stress. If this system is overwhelmed, intracellular mechanisms of protection are required to avoid activation of the apoptosis pathway.

PubMed Disclaimer

Publication types

LinkOut - more resources