Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;2(1):49-59.
doi: 10.1177/109980040000200106.

Iron-overload cardiomyopathy: evidence for a free radical--mediated mechanism of injury and dysfunction in a murine model

Affiliations

Iron-overload cardiomyopathy: evidence for a free radical--mediated mechanism of injury and dysfunction in a murine model

W J Bartfay et al. Biol Res Nurs. 2000 Jul.

Abstract

Iron-overload cardiomyopathy is a restrictive cardiomyopathy that manifests itself as systolic or diastolic dysfunction secondary to increased deposition of iron in the heart and occurs with common genetic disorders such as primary hemochromatosis and beta-thalassemia major. Although the exact mechanism of iron-induced heart failure remains to be elucidated, the toxicity of iron in biological systems is believed to be attributed to its ability to catalyze the generation of oxygen-free radicals. In the current investigation, the dose-dependent effects of chronic iron-loading on heart tissue concentrations of iron, glutathione peroxidase (GPx) activity, free-radical production, and cardiac dysfunction were investigated in a murine model of iron-overload cardiomyopathy. It was shown that chronic iron-overload results in dose-dependent (a) increases in myocardial iron burden, (b) decreases in the protective antioxidant enzyme GPx activity, (c) increased free-radical production, and (d) increased mortality. These findings show that the mechanism of iron-induced heart dysfunction involves in part free radical-mediated processes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources