Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;26(2):105-16.
doi: 10.1093/chemse/26.2.105.

Reduction of saltiness and bitterness after a chlorhexidine rinse

Affiliations

Reduction of saltiness and bitterness after a chlorhexidine rinse

P A Breslin et al. Chem Senses. 2001 Feb.

Erratum in

  • Chem Senses 2001 May;26(4):447

Abstract

Chronic rinsing with chlorhexidine, an oral-antiseptic, has been shown to decrease the saltiness of NaCl and the bitterness of quinine. The effect of acute chlorhexidine on taste has not been investigated. The purpose of the present study was to examine the effect of acute chlorhexidine rinses on taste intensity and quality of 11 stimuli representing sweet, salt, sour, bitter and savory. All stimuli were first matched for overall intensity so the effects of chlorhexidine would be directly comparable across compounds. As a control treatment, the bitter taste of chlorhexidine digluconate (0.12%) was matched in intensity to quinine HCl, which was found to cross-adapt the bitterness of chlorhexidine. Subjects participated in four experimental conditions: a pre-test, a quinine treatment, a chlorhexidine treatment, and a post-test condition, while rating total taste intensity and taste qualities in separate test sessions. Relative to the quinine treatment, chlorhexidine was found to decrease the salty taste of NaCl, KCl and NH4Cl, and not to significantly affect the tastes of sucrose, monosodium glutamate (MSG), citric acid, HCl and the taste of water. The bitter taste of urea, sucrose octa-acetate and quinine were suppressed after chlorhexidine rinses relative to water rinses, but were only marginally suppressed relative to quinine rinses. Potential mechanisms are discussed.

PubMed Disclaimer

Publication types