Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids
- PMID: 11239718
- DOI: 10.1016/s0304-3940(01)01591-9
Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids
Abstract
Cannabinoid use is known to disrupt learning and memory in a number of species. cholecystokinin (CCK) release and CCK receptors have been implicated in spatial memory processes in rodents. Rat hippocampal CCK interneurons express cannabinoid 1 receptors (CB1). The CB1 agonist R(+)WIN 55,212-2 (WIN+), at 1 and 10 micromol, strongly inhibited potassium-evoked CCK release from rat hippocampal slices, while the inactive isomer S(-)WIN,55,212-3 (WIN-) had no effect. CCK release from cerebral cortical slices was not altered by WIN+.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous