Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 2;491(3):180-3.
doi: 10.1016/s0014-5793(01)02189-5.

Stimulation of p38 MAP kinase reduces acidosis and Na(+) overload in preconditioned hepatocytes

Affiliations
Free article

Stimulation of p38 MAP kinase reduces acidosis and Na(+) overload in preconditioned hepatocytes

R Carini et al. FEBS Lett. .
Free article

Abstract

Ischemic preconditioning has been shown to improve liver resistance to hypoxia/reperfusion damage. A signal pathway involving A(2A)-adenosine receptor, G(i)-proteins, protein kinase C and p38 MAP kinase is responsible for the development of hypoxic preconditioning in hepatocytes. However, the coupling of this signal pathway with the mechanisms responsible for cytoprotection is still unknown. We have observed that stimulation of A(2A)-adenosine receptors or of p38 MAPK by CGS21680 or anisomycin, respectively, appreciably reduced intracellular acidosis and Na(+) accumulation developing during hypoxia. These effects were reverted by p38 MAPK inhibitor SB203580 as well as by blocking vacuolar proton ATPase with bafilomycin A(1). SB203580 and bafilomycin A(1) also abolished the cytoprotective action exerted by both CGS21680 and anisomycin. We propose that the stimulation of p38 MAPK by preconditioning might increase hepatocyte resistance to hypoxia by activating proton extrusion through vacuolar proton ATPase, thus limiting Na(+) overload promoted by Na(+)-dependent acid buffering systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources