Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jun;64(3):277-305.
doi: 10.1016/s0301-0082(00)00062-9.

Voltage-gated proton channels in microglia

Affiliations
Review

Voltage-gated proton channels in microglia

C Eder et al. Prog Neurobiol. 2001 Jun.

Abstract

Microglia, macrophages that reside in the brain, can express at least 12 different ion channels, including voltage-gated proton channels. The properties of H+ currents in microglia are similar to those in other phagocytes. Proton currents are elicited by depolarizing the membrane potential, but activation also depends strongly on both intracellular pH (pH(i)) and extracellular pH (pH(o)). Increasing pH(o) or lowering pH(i) promotes H+ channel opening by shifting the activation threshold to more negative potentials. H+ channels in microglia open only when the pH gradient is outward, so they carry only outward current in the steady state. Time-dependent activation of H+ currents is slow, with a time constant roughly 1 s at room temperature. Microglial H+ currents are inhibited by inorganic polyvalent cations, which reduce H+ current amplitude and shift the voltage dependence of activation to more positive potentials. Cytoskeletal disruptive agents modulate H+ currents in microglia. Cytochalasin D and colchicine decrease the current density and slow the activation of H+ currents. Similar changes of H+ currents, possibly due to cytoskeletal reorganization, occur in microglia during the transformation from ameboid to ramified morphology. Phagocytes, including microglia, undergo a respiratory burst, in which NADPH oxidase releases bactericidal superoxide anions into the phagosome and stoichiometrically releases protons into the cell, tending to depolarize and acidify the cell. H+ currents may help regulate both the membrane potential and pH(i) during the respiratory burst. By compensating for the efflux of electrons and counteracting intracellular acidification, H+ channels help maintain superoxide anion production.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources