Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 15;63(6):500-8.
doi: 10.1002/jnr.1044.

Hypoxanthine impairs morphogenesis and enhances proliferation of a neuroblastoma model of Lesch Nyhan syndrome

Affiliations

Hypoxanthine impairs morphogenesis and enhances proliferation of a neuroblastoma model of Lesch Nyhan syndrome

M H Ma et al. J Neurosci Res. .

Abstract

Extracellular purines have essential roles in neuronal development; hence, disruptions in their metabolism as reported in Lesch Nyhan syndrome (LNS) could result in developmental abnormalities. The deficiency of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) in LNS leads to increased hypoxanthine and uric acid production. We have reported that HGPRT-deficient B103-4C neuroblastoma, a neuronal model of LNS, proliferated less and differentiated more than their HGPRT-positive B103 counterparts. Here, we sought to determine whether differences in proliferation and differentiation would occur when these cells were cultured in the presence of hypoxanthine or in a hypoxanthine-/serum-free chemically defined media (NBMN2). In media with 1% serum, hypoxanthine (50 microM) significantly increased the proliferation of both cell lines with a greater effect on B103-4C cells. In 1% serum media, hypoxanthine increased differentiation of B103 but decreased B103-4C differentiation. In NBMN2, B103 proliferated far more than B103-4C, but both cell types differentiated to the same extent. These results are interpreted to suggest that elevated levels of central nervous system (CNS) hypoxanthine as reported in LNS may affect neuronal development, and to implicate hypoxanthine and abnormal neuronal development as causative factors in the etiology of LNS.

PubMed Disclaimer

Publication types

LinkOut - more resources