Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 8;410(6825):227-30.
doi: 10.1038/35065638.

Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans

Affiliations

Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans

H A Tissenbaum et al. Nature. .

Abstract

In Caenorhabditis elegans, mutations that reduce the activity of an insulin-like receptor (daf-2) or a phosphatidylinositol-3-OH kinase (age-1) favour entry into the dauer state during larval development and extend lifespan in adults. Downregulation of this pathway activates a forkhead transcription factor (daf-16), which may regulate targets that promote dauer formation in larvae and stress resistance and longevity in adults. In yeast, the SIR2 gene determines the lifespan of mother cells, and adding an extra copy of SIR2 extends lifespan. Sir2 mediates chromatin silencing through a histone deacetylase activity that depends on NAD (nicotinamide adenine dinucleotide) as a cofactor. We have surveyed the lifespan of C. elegans strains containing duplications of chromosomal regions. Here we report that a duplication containing sir-2.1-the C. elegans gene most homologous to yeast SIR2-confers a lifespan that is extended by up to 50%. Genetic analysis indicates that the sir-2.1 transgene functions upstream of daf-16 in the insulin-like signalling pathway. Our findings suggest that Sir2 proteins may couple longevity to nutrient availability in many eukaryotic organisms.

PubMed Disclaimer

Comment in

Publication types

MeSH terms