Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec;132(3):180-90.
doi: 10.1006/jsbi.2000.4318.

Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: insights into the deacetylation mechanism

Affiliations
Comparative Study

Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: insights into the deacetylation mechanism

N Hakulinen et al. J Struct Biol. 2000 Dec.

Abstract

Acetylxylan esterase from Trichoderma reesei removes acetyl side groups from xylan. The crystal structure of the catalytic core of the enzyme was solved at 1.9 A resolution. The core has an alpha/beta/alpha sandwich fold, similar to that of homologous acetylxylan esterase from Penicillium purpurogenum and cutinase from Fusarium solani. All three enzymes belong to family 5 of the carbohydrate esterases and the superfamily of the alpha/beta hydrolase fold. Evidently, the enzymes have diverged from a common ancestor and they share the same catalytic mechanism. The catalytic machinery of acetylxylan esterase from T. reesei was studied by comparison with cutinase, the catalytic site of which is well known. Acetylxylan esterase is a pure serine esterase having a catalytic triad (Ser90, His187, and Asp175) and an oxyanion hole (Thr13 N, and Thr13 O gamma). Although the catalytic triad of acetylxylan esterase has been reported previously, there has been no mention of the oxyanion hole. A model for the binding of substrates is presented on the basis of the docking of xylose. Acetylxylan esterase from T. reesei is able to deacetylate both mono- and double-acetylated residues, but it is not able to remove acetyl groups located close to large side groups such as 4-O-methylglucuronic acid. If the xylopyranoside residue is double-acetylated, both acetyl groups are removed by the catalytic triad: first one acetyl group is removed and then the residue is reorientated so that the nucleophilic oxygen of serine can attack the second acetyl group.

PubMed Disclaimer

Publication types

LinkOut - more resources