Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;22(7):667-76.
doi: 10.1016/s0142-9612(00)00229-5.

Water absorption and surface properties of novel poly(ethylmethacrylate) polymer systems for use in bone and cartilage repair

Affiliations

Water absorption and surface properties of novel poly(ethylmethacrylate) polymer systems for use in bone and cartilage repair

G A Hutcheon et al. Biomaterials. 2001 Apr.

Abstract

The surface and bulk properties of novel methacrylate polymers prepared by gelling poly(ethyl methacrylate) (PEMA) powder with different ratios of tetrahydrofurfuryl methacrylate (THFMA) and hydroxyethyl methacrylate (HEMA) monomers were investigated. The water adsorption and desorption characteristics of these polymers were measured in water and phosphate buffered saline (PBS). The desorption diffusion coefficients were higher than the adsorption coefficients in both water and PBS. Linear relationships between the equilibrium mass of water taken up and the mass of water desorbed with the concentration of HEMA in the polymer were established. Polymer surfaces were analysed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface features varied with polymer composition; during hydration only selective areas of the surface hydrated indicating a heterogeneous surface. Contact angle data showed no trend between the different polymers indicating that contact angles are not an acceptable method of assessing hydrophobicity/wettability of a material which does not have a homogeneous surface. The effect of these bulk and surface characteristics on biological interactions were examined using bovine chondrocytes and human osteoblast (HOB) cell cultures. Cell attachment decreased when HEMA was present in the copolymer.

PubMed Disclaimer

Publication types

LinkOut - more resources