Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;280(4):H1645-52.
doi: 10.1152/ajpheart.2001.280.4.H1645.

Severe exercise alters the strength and mechanisms of the muscle metaboreflex

Affiliations
Free article

Severe exercise alters the strength and mechanisms of the muscle metaboreflex

R A Augustyniak et al. Am J Physiol Heart Circ Physiol. 2001 Apr.
Free article

Abstract

Previous studies have shown that in dogs performing mild to moderate treadmill exercise, partial graded reductions in hindlimb blood flow cause active skeletal muscle to become ischemic and metabolites to accumulate thus evoking the muscle metaboreflex. This leads to a substantial reflex increase in mean arterial pressure (MAP) mediated almost solely via a rise in cardiac output (CO). However, during severe exercise CO is likely near maximal and thus metaboreflex-mediated increases in MAP may be attenuated. We therefore evoked the metaboreflex via partial graded reductions in hindlimb blood flow in seven dogs during mild, moderate, and severe treadmill exercise. During mild and moderate exercise there was a large rise in CO (1.5 +/- 0.2 and 2.2 +/- 0.3 l/min, respectively), whereas during severe exercise no significant increase in CO occurred. The rise in CO caused a marked pressor response that was significantly attenuated during severe exercise (26.3 +/- 7.0, 33.2 +/- 5.6, and 12.2 +/- 4.8 mmHg, respectively). We conclude that during severe exercise the metaboreflex pressor response mechanisms are altered such that the ability of this reflex to increase CO is abolished, and reduced pressor response occurs only via peripheral vasoconstriction. This shift in mechanisms likely limits the effectiveness of the metaboreflex to increase blood flow to ischemic active skeletal muscle. Furthermore, because the metaboreflex is a flow-raising reflex and not a pressure-raising reflex, it may be most appropriate to describe the metaboreflex magnitude based on its ability to evoke a rise in CO and not a rise in MAP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources