Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 30;106(1):15-28.
doi: 10.1016/s0165-0270(00)00372-1.

Partial, graded losses of dopamine terminals in the rat caudate-putamen: an animal model for the study of compensatory adaptation in preclinical parkinsonism

Affiliations

Partial, graded losses of dopamine terminals in the rat caudate-putamen: an animal model for the study of compensatory adaptation in preclinical parkinsonism

B P Bergstrom et al. J Neurosci Methods. .

Abstract

Procedures to lesion dopamine (DA) neurons innervating the rat caudate-putamen (CP) in a partial, graded fashion are described in this study. The goal is to provide a lesion model that supports intra-animal comparisons of voltammetric recordings used to investigate compensatory adaptation of DA neurotransmission. Lesions exploited the topography of mesostriatal DA neurons, microinjections of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial and lateral edges of the ventral mesencephalon containing DA cell bodies and microdissection of the CP into six regions. Analysis of tissue DA content in these regions by HPLC-EC demonstrated that 6-OHDA injected into the lateral substantia nigra results in a significantly greater loss of DA in lateral versus medial regions of the CP. The direction of the graded loss of DA was reversed (i.e. a medial to lateral lesion gradient) by the injection of 6-OHDA into the ventral tegmental area near the medial SN. Extracellular concentrations of electrically evoked DA could be measured across the mediolateral axis of the CP in a single animal using the technique of in vivo voltammetry. More importantly, graded decreases in the amplitude of evoked DA levels generally followed the direction of the tissue DA gradient in lesioned animals. These results suggest that the graded loss of DA terminals in the CP, coupled to a spatially and temporally resolved technique for monitoring extracellular DA, is a viable tool for investigating compensatory adaptation in the mesostriatal DA system.

PubMed Disclaimer

Publication types

LinkOut - more resources