Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 7;9(2):145-53.
doi: 10.1016/s0969-2126(01)00568-8.

Structural insights into the mode of action of a pure antiestrogen

Affiliations
Free article

Structural insights into the mode of action of a pure antiestrogen

A C Pike et al. Structure. .
Free article

Abstract

Background: Estrogens exert their effects on target tissues by binding to a nuclear transcription factor termed the estrogen receptor (ER). Previous structural studies have demonstrated that each class of ER ligand (agonist, partial agonist, and SERM antagonist) induces distinctive orientations in the receptor's carboxy-terminal transactivation helix. The conformation of this portion of the receptor determines whether ER can recruit and interact with the components of the transcriptional machinery, thereby facilitating target gene expression.

Results: We have determined the structure of rat ERbeta ligand binding domain (LBD) in complex with the pure antiestrogen ICI 164,384 at 2.3 A resolution. The binding of this compound to the receptor completely abolishes the association between the transactivation helix (H12) and the rest of the LBD. The structure reveals that the terminal portion of ICI's bulky side chain substituent protrudes from the hormone binding pocket, binds along the coactivator recruitment site, and physically prevents H12 from adopting either its characteristic agonist or AF2 antagonist orientation.

Conclusions: The binding mode adopted by the pure antiestrogen is similar to that seen for other ER antagonists. However, the size and resultant positioning of the ligand's side chain substituent produces a receptor conformation that is distinct from that adopted in the presence of other classes of ER ligands. The novel observation that binding of ICI results in the complete destabilization of H12 provides some indications as to a possible mechanism for pure receptor antagonism.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources