Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;142(4):1489-96.
doi: 10.1210/endo.142.4.8082.

Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I

Affiliations

Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I

M Brink et al. Endocrinology. 2001 Apr.

Abstract

We previously showed that angiotensin II (ang II) infusion in the rat produces cachexia and decreases circulating insulin-like growth factor I (IGF-I). The weight loss derives from an anorexigenic response and a catabolic effect of ang II. In these experiments we assessed potential catabolic mechanisms and the involvement of the IGF-I system in these responses to ang II. Ang II infusion caused a significant decrease in body weight compared with that of pair-fed control rats. Kidney and left ventricular weights were significantly increased by ang II, whereas fat tissue was unchanged. Skeletal muscle mass was significantly decreased in the ang II-infused rats, and a reduction in lean muscle mass was a major reason for their overall loss of body weight. In skeletal muscles, ang II did not significantly decrease protein synthesis, but overall protein breakdown was accelerated; inhibiting lysosomal and calcium-activated proteases did not reduce the ang II-induced increase in muscle proteolysis. Circulating IGF-I levels were 33% lower in ang II rats vs. control rats, and this difference was reflected in lower IGF-I messenger RNA levels in the liver. Moreover, IGF-I, IGF-binding protein-3, and IGF-binding protein-5 messenger RNAs in the gastrocnemius were significantly reduced. To investigate whether the reduced circulating IGF-I accounts for the loss in muscle mass, we increased circulating IGF-I by coinfusing ang II and IGF-I, but this did not prevent muscle loss. Our data suggest that ang II causes a loss in skeletal muscle mass by enhancing protein degradation probably via its inhibitory effect on the autocrine IGF-I system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms