Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jan 31;376(1):105-15.
doi: 10.1016/0005-2728(75)90209-1.

Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone

Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone

M Kitajima et al. Biochim Biophys Acta. .

Abstract

The quenching action of dibromothymoquinone on fluorescence and on primary photochemistry was examined in chloroplasts at minus 196 degrees C. Both the initial (F0) and final (FM) levels of fluorescence as well as the fluorescence of variable yield (FV equals FM minus FO) were quenched at minus 196 degrees C to a degree which depended on the concentration of dibromothymoquinone added prior to freezing. The initial rate of photoreduction of C-550 at minus 196 degrees C, which was assumed to be proportional to maximum yield for primary photochemistry, phipo, was also decreased in the presence of dibromothymoquinone. Simple theory predicts that the ratio FV/FM should equal phipo. Excellent agreement was found in a comparison of relative values of phipo with relative values of FV/FM at various degrees of quenching by dibromothymoquinone. These results are taken to indicate that FO and FV are the same type of fluorescence, both emanating from the bulk chlorophyll of Photosystem II. Dibromothymoquinone appears to create quenching centers in the bulk chlorophyll of Photosystem II which compete with the reaction centers for excitation energy. The rate constant for the quenching of excitation energy by dibromothymoquinone is directly proportional to the concentration of the quencher. Rate constants for the de-excitation of excited chlorophyll molecules by fluorescence, kF, by nonradiative decay processes, kD, by photochemistry, kP, and by the specific quenching of dibromothymoquinone, kQ, were calculated assuming the absolute yield of fluorescence at FO to be either 0.02 or 0.05.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources