Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Dec;1(2):87-90.
doi: 10.1034/j.1399-5618.1999.010205.x.

Lithium and synaptic plasticity

Affiliations
Review

Lithium and synaptic plasticity

P C Salinas et al. Bipolar Disord. 1999 Dec.

Abstract

Lithium, a small cation, has been used in the treatment of bipolar disorders since its introduction in the 1950s by John Cade. Extensive research on the mechanism of action of lithium has revealed several possible targets. For some time, the most widely accepted action of lithium was its inhibitory effect on the synthesis of inositol, resulting in depletion of inositol with profound effects on neuronal signal transduction pathways. However, several studies show that some effects of lithium are not mediated through inositol depletion. Recent findings demonstrate that lithium directly inhibits, in a non-competitive fashion, the activity of glycogen synthase kinase (GSK)-3beta, a serine/threonine kinase highly expressed in the central nervous system. Interestingly, inhibition of GSK-3beta has been shown to regulate neuronal plasticity by inducing axonal remodelling and increasing the levels of synaptic proteins. These findings raise the possibility for developing new therapeutic approaches for the treatment of bipolar disorders.

PubMed Disclaimer

Publication types

MeSH terms