Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Apr 1;166(7):4348-54.
doi: 10.4049/jimmunol.166.7.4348.

Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration

Affiliations
Comparative Study

Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration

S Delaire et al. J Immunol. .

Abstract

CD100 is a human 150-kDa homodimer expressed at the surface of most hemopoietic cells, and its gene belongs to the Ig and semaphorin gene families. Semaphorin genes encode soluble and membrane-bound proteins, most of which have been shown to act as chemorepellents on growth cone guidance. CD100 is discrete, as it is a transmembrane leukocyte surface molecule that can also exist in a soluble form. While our previous studies using mAbs suggested that the transmembrane form of CD100 plays a role in lymphocyte activation, no function was shown for its soluble form. Here, we investigated the effect of soluble CD100 in a cell migration assay; both CD100 spontaneously shed from a stable transfectant and soluble recombinant CD100 inhibited spontaneous and chemokine-induced migration of human monocytes. Interestingly, only the dimeric form of CD100 exerted an effect. Moreover, soluble CD100 inhibited migration of cells from monocytic and B cell lineages. A similar inhibitory effect on migration was observed with H-SemaIII, but not H-SemaIV, semaphorins. In addition, both CD100 and H-SemaIII were recognized by two CD100 mAbs in an ELISA, and one of these mAb abolished the inhibitory effect of each of these semaphorins. We also provide evidence that CD100 and H-SemaIII act through the same receptor on immune cells, which is not neuropilin-1. Furthermore, we describe a function on immune cells for H-SemaIII, a semaphorin to date only studied in the nervous system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources