Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr;10(7):657-62.
doi: 10.1093/hmg/10.7.657.

Tissue microarray technology for high-throughput molecular profiling of cancer

Affiliations
Review

Tissue microarray technology for high-throughput molecular profiling of cancer

O P Kallioniemi et al. Hum Mol Genet. 2001 Apr.

Abstract

Tissue microarray (TMA) technology allows rapid visualization of molecular targets in thousands of tissue specimens at a time, either at the DNA, RNA or protein level. The technique facilitates rapid translation of molecular discoveries to clinical applications. By revealing the cellular localization, prevalence and clinical significance of candidate genes, TMAs are ideally suitable for genomics-based diagnostic and drug target discovery. TMAs have a number of advantages compared with conventional techniques. The speed of molecular analyses is increased by more than 100-fold, precious tissues are not destroyed and a very large number of molecular targets can be analyzed from consecutive TMA sections. The ability to study archival tissue specimens is an important advantage as such specimens are usually not applicable in other high-throughput genomic and proteomic surveys. Construction and analysis of TMAs can be automated, increasing the throughput even further. Most of the applications of the TMA technology have come from the field of cancer research. Examples include analysis of the frequency of molecular alterations in large tumor materials, exploration of tumor progression, identification of predictive or prognostic factors and validation of newly discovered genes as diagnostic and therapeutic targets.

PubMed Disclaimer

Publication types