Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;29(4 Pt 2):601-5.

Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase

Affiliations
  • PMID: 11259360

Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase

R Weinshilboum. Drug Metab Dispos. 2001 Apr.

Abstract

Thiopurine drugs are used to treat patients with neoplasia and autoimmune disease as well as transplant recipients. These agents are metabolized, in part, by S-methylation catalyzed by thiopurine methyltransferase (TPMT). The discovery nearly two decades ago that levels of TPMT activity in human tissues are controlled by a common genetic polymorphism led to one of the best examples of the potential importance of pharmacogenetics for clinical medicine. Specifically, it is now known that patients with inherited very low levels of TPMT activity are at greatly increased risk for thiopurine-induced toxicity such as myelosuppression when treated with standard doses of these drugs, while subjects with very high activity may be undertreated. Furthermore, recent reports indicate that TPMT may be the target for clinically significant drug interactions and that this common genetic polymorphism might be a risk factor for the occurrence of therapy-dependent secondary leukemia. In parallel with these clinical reports, the molecular basis for the TPMT polymorphism has been determined as a result of cloning and characterization of the human TPMT cDNA and gene. Those advances led to the description and characterization of a series of single nucleotide polymorphisms that result in low levels of enzyme activity as well as a polymorphic variable number tandem repeat within the 5'-flanking region of the TPMT gene that may "modulate" level of enzyme activity. As a result of these observations, the TPMT genetic polymorphism represents a model system for the way in which basic pharmacogenetic information is developed and applied to clinical medicine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources