Propagation of synchronous epileptiform events from subiculum backward into area CA1 of rat brain slices
- PMID: 11259758
- DOI: 10.1016/s0006-8993(01)02023-6
Propagation of synchronous epileptiform events from subiculum backward into area CA1 of rat brain slices
Abstract
The hippocampal trisynaptic pathway is comprised of superficial entorhinal afferents (part of the perforant path) to dentate granule cells, dentate mossy fiber inputs to CA3 pyramidal neurons, and CA3 cell projections to CA1 pyramidal neurons. This CA1 output is among others to the subiculum, and both CA1 and subiculum project to the entorhinal cortex to close the loop. Smaller circuits involving fewer hippocampal and parahippocampal regions have also been described. We present morphological and electrophysiological evidence from rat brain slices for a projection from subiculum back into area CA1. Axons of neurobiotin-labeled subicular pyramidal neurons were visualized in the apical dendritic region of CA1. Spontaneous activity in isolated subiculum--CA1 slices was produced by bathing slices in reduced magnesium media. Events in CA1 always followed events in proximal subiculum. Disruption of this subiculum--CA1 circuit with a radially oriented knife cut in the apical dendritic region between subiculum and CA1 eliminated afterdischarges in subicular and CA1 events, but did not de-synchronize the two regions. Full transections between CA1 and subiculum were necessary to functionally isolate the two regions. Only subiculum remained spontaneously active. We conclude that a subiculum--CA1 circuit supports afterdischarges in both regions and synchronizes their activity. This circuit may serve to maintain a level of depolarization in subicular and CA1 pyramidal neurons well beyond the duration of excitatory synaptic potentials resulting from activation of the trisynaptic circuitry.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous