Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Feb 28;356(1406):169-76.
doi: 10.1098/rstb.2000.0762.

Investigating protein conformation-based inheritance and disease in yeast

Affiliations
Review

Investigating protein conformation-based inheritance and disease in yeast

S Lindquist et al. Philos Trans R Soc Lond B Biol Sci. .

Abstract

Our work supports the hypothesis that a protein can serve as an element of genetic inheritance. This protein-only mechanism of inheritance is propagated in much the same way as hypothesized for the transmission of the protein-only infectious agent in the spongiform encephalopathies; hence these protein factors have been called yeast prions. Our work has focused on [PSI(+)], a dominant cytoplasmically inherited factor that alters translational fidelity. This change in translation is produced by a self-perpetuating change in the conformation of the translation-termination factor, Sup35. Most recently, we have determined that new elements of genetic inheritance can be created by deliberate genetic engineering, opening prospects for new methods of manipulating heredity. We have also uncovered evidence that other previously unknown elements of protein-based inheritance are encoded in the yeast genome. Finally, we have begun to use yeast as a model system for studying human protein folding diseases, such as Huntington's disease. Proteins responsible for some of these diseases have properties uncannily similar to those that produce protein-based mechanisms of inheritance.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms