Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 1;97(7):1982-9.
doi: 10.1182/blood.v97.7.1982.

CD9 and megakaryocyte differentiation

Affiliations
Free article

CD9 and megakaryocyte differentiation

D Clay et al. Blood. .
Free article

Abstract

It is shown that the tetraspanin CD9 has a complex pattern of distribution in hematopoietic cells and is heterogeneously expressed on human bone marrow CD34(+) cells. CD34(high)CD38(low)Thy1(+) primitive progenitors are contained in the population with intermediate CD9 expression, thus suggesting that CD9 expression may precede CD38 appearance. Cell sorting shows that colony-forming unit (CFU)-GEMM and CFU-GM are present in high proportions in this fraction and in the fraction with the lowest CD9 expression. Cells with the highest level of CD9 are committed to the B-lymphoid or megakaryocytic (MK) lineages, as shown by the co-expression of either CD19 or CD41/GPIIb and by their strong potential to give rise to CFU-MK. In liquid cultures, CD9(high)CD41(neg) cells give rise to cells with high CD41 expression as early as 2 days, and this was delayed by at least 3 to 4 days for the CD9(mid) cells; few CD41(high) cells could be detected in the CD9(low) cell culture, even after 6 days. Antibody ligation of cell surface CD9 increased the number of human CFU-MK progenitors and reduced the production of CD41(+) megakaryocytic cells in liquid culture. This was associated with a decreased expression of MK differentiation antigens and with an alteration of the membrane structure of MK cells. Altogether these data show a precise regulation of CD9 during hematopoiesis and suggest a role for this molecule in megakaryocytic differentiation, possibly by participation in membrane remodeling. (Blood. 2001;97:1982-1989)

PubMed Disclaimer

Publication types

MeSH terms