Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999;2(3):201-231.
doi: 10.1080/10255849908907988.

A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions

Affiliations

A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions

FRANK C. Anderson et al. Comput Methods Biomech Biomed Engin. 1999.

Abstract

A three-dimensional model of the human body is used to simulate a maximal vertical jump. The body is modeled as a 10-segment, 23 degree-of-freedom (dof), mechanical linkage, actuated by 54 muscles. Six generalized coordinates describe the position and orientation of the pelvis relative to the ground; the remaining nine segments branch in an open chain from the pelvis. The head, arms, and torso (HAT) are modeled as a single rigid body. The HAT articulates with the pelvis via a 3 dof ball-and-socket joint. Each hip is modeled as a 3 dof ball-and-socket joint, and each knee is modeled as a 1 dof hinge joint. Each foot is represented by a hindfoot and toes segment. The hindfoot articulates with the shank via a 2 dof universal joint, and the toes articulate with the hindfoot via a 1 dof hinge joint. Interaction of the feet with the ground is modeled using a series of spring-damper units placed under the sole of each foot. The path of each muscle is represented by either a series of straight lines or a combination of straight lines and space curves. Each actuator is modeled as a three-element, Hill-type muscle in series with tendon. A first-order process is assumed to model muscle excitation-contraction dynamics. Dynamic optimization theory is used to calculate the pattern of muscle excitations that produces a maximal vertical jump. Quantitative comparisons between model and experiment indicate that the model reproduces the kinematic, kinetic, and muscle-coordination patterns evident when humans jump to their maximum achievable heights.

PubMed Disclaimer

LinkOut - more resources