Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:917:488-99.
doi: 10.1111/j.1749-6632.2000.tb05413.x.

Experimental immunomodulation, sleep, and sleepiness in humans

Affiliations
Review

Experimental immunomodulation, sleep, and sleepiness in humans

T Pollmächer et al. Ann N Y Acad Sci. 2000.

Abstract

Infection, inflammation, and autoimmune processes are accompanied by serious disturbances of well-being, psychosocial functioning, cognitive performance, and behavior. Here we review those studies that have investigated the effects of experimental immunomodulation on sleep and sleepiness in humans. In most of these studies bacterial endotoxin was injected intravenously to model numerous aspects of infection including the release of inflammatory cytokines. These studies show that human sleep-wake behavior is very sensitive to host defense activation. Small amounts of endotoxin, which affect neither body temperature nor neuroendocrine systems but slightly stimulate the secretion of inflammatory cytokines, promote non-rapid-eye-movement sleep amount and intensity. Febrile host responses, in contrast, go along with prominent sleep disturbances. According to present knowledge tumor necrosis factor-alpha (TNF-alpha) is most probably a key mediator of these effects, although it is likely that disturbed sleep during febrile host responses involves endocrine systems as well. There is preliminary evidence from human studies suggesting that inflammatory cytokines such as TNF-alpha not only mediate altered sleep-wake behavior during infections, but in addition are involved in physiological sleep regulation and in hypnotic effects of established sedating drugs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources