Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 May;65(2):258-70.
doi: 10.1083/jcb.65.2.258.

Structural and transcriptional features of the mouse spermatid genome

Structural and transcriptional features of the mouse spermatid genome

A L Kierszenbaum et al. J Cell Biol. 1975 May.

Abstract

A whole-mount electron microscope technique has allowed direct visualization of the transcription process in mouse spermatids. Thes observations have been supported by light and electron microscope autoradiographic techniques that employ [3H]uridine and [3H]arginine in attempts to clarify mechanisms of RNA synthesis and their relationship to nuclear histone changes throughout spermiogenesis. Early spermatid genomes are dispersed almost completely, whereas in later spermiogenic steps the posterior or flagellar nuclear region is readily dispersed and the anterior or subacrosomal nuclear region remains compact. Display of genome segments permits identification of regions where transcription complexes, presumably heterogeneous nuclear RNA species, are seen related to chromatin. These complexes appear as ribonucleoprotein chains, some of them of considerable length, decreasing progressively in number in late spermiogenic steps. This decrease coincides with diminishing rates of [3H]uridine incorporation. Two distinct patterns of chromatin have been identified: a beaded chromatin type associated with transcription complexes encounterd in early spermatids; and a smooth chromatin type not involved in transcriptive activity observed in advanced spermiogenic genomes. Protein particles staining densely with phosphotungstic acid become apparent in nuclei of spermatids after [3H]arginine incorporation becomes significant. There is no structural or autoradiographic evidence for the presence of nucleoli during spermiogenesis. From these data and from previous experimental findings, we conclude that: (a) spermatogonia, spermatocytes and Sertoli cells are transcriptionally expressed into heterogeneous nuclear RNA and preribosomal RNA species whereas transcription in spermatids is predominantly heterogeneous nuclear RNA; and (b) the modification of the chromatin patterns in late spermiogenic steps indicates a stabilized genome that restricts transcriptive functions.

PubMed Disclaimer

References

    1. Exp Cell Res. 1964 Dec;36:683-8 - PubMed
    1. Am J Anat. 1956 Nov;99(3):391-413 - PubMed
    1. J Biophys Biochem Cytol. 1955 Jul 25;1(4):287-300 - PubMed
    1. Science. 1974 Jan 25;183(4122):330-2 - PubMed
    1. J Cell Biol. 1969 Mar;40(3):761-7 - PubMed

MeSH terms