Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 8;276(23):20144-53.
doi: 10.1074/jbc.M010771200. Epub 2001 Mar 27.

Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor)

Affiliations
Free article

Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor)

D M Balshaw et al. J Biol Chem. .
Free article

Abstract

Metabolically (35)S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [(3)H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca(2+); in the presence of 100 microm Ca(2+), the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [(35)S]CaM molecules per RyR tetramer, both in the presence and absence of Ca(2+). At least four CaM binding domains were identified in [(35)S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca(2+) concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources