Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 1;43(2):82-8.

Effect of naturally occurring active site mutations on hepatitis C virus NS3 protease specificity

Affiliations
  • PMID: 11276078

Effect of naturally occurring active site mutations on hepatitis C virus NS3 protease specificity

B M Beyer et al. Proteins. .

Abstract

A comparison of the DNA sequences from all available genotypes of HCV indicate that the active site residues of the NS3 protease are strictly conserved with the exception of positions 123 and 168, which border the S(4) subsite. In genotype 3, the canonic arginine and aspartic acid have been replaced with threonine and glutamine, respectively. To determine if these differences contribute to an altered specificity, we characterized single-chain NS3 proteases from strains 1a, 1b, and 3a with peptide substrates and product inhibitors on the basis of the natural cleavage junction sequences, in addition to polyprotein substrates derived from the 1a strain. No statistically significant differences in specificity were observed. To demonstrate that the active sites were actually different, we generated and evaluated peptide substrates with unnatural extended side-chains. These studies confirmed that there are measurable differences between the NS3 proteases of genotypes 1 and 3. Specifically, a 5-fold difference in K(i) was observed between the proteases from genotypes 1 and 3 when a D-Glu occupied P(5), and a 30-fold difference was seen when this position contained a D-homoglutamate. The contribution of residues 123 and 168 toward the altered specificity was then evaluated individually by site-directed mutagenesis. These mutants showed that potency differences within this series could be attributed to the residue that occupied position 123 of the protease. Modeling these unnatural substrate/mutant protease interactions, on the basis of cocrystal structures of enzyme-substrate complexes, provides a structural basis for these observations. Proteins 2001;43:82-88.

PubMed Disclaimer

LinkOut - more resources