A universal mode of helix packing in RNA
- PMID: 11276255
- DOI: 10.1038/86221
A universal mode of helix packing in RNA
Abstract
RNA molecules fold into specific three-dimensional shapes to perform structural and catalytic functions. Large RNAs can form compact globular structures, but the chemical basis for close helical packing within these molecules has been unclear. Analysis of transfer, catalysis, in vitro-selected and ribosomal RNAs reveal that helical packing predominantly involves the interaction of single-stranded adenosines with a helix minor groove. Using the Tetrahymena thermophila group I ribozyme, we show here that the near-perfect shape complementarity between the adenine base and the minor groove allows for optimal van der Waals contacts, extensive hydrogen bonding and hydrophobic surface burial, creating a highly energetically favorable interaction. Adenosine is recognized in a chemically similar fashion by a combination of protein and RNA components in the ribonucleoprotein core of the signal recognition particle. These results provide a thermodynamic explanation for the noted abundance of conserved adenosines within the unpaired regions of RNA secondary structures.
Similar articles
-
RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.Nature. 1992 Jul 9;358(6382):123-8. doi: 10.1038/358123a0. Nature. 1992. PMID: 1377367
-
Ribozyme crevices and catalysis.Nature. 1998 Oct 8;395(6702):548-9. doi: 10.1038/26864. Nature. 1998. PMID: 9783578 No abstract available.
-
Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii.J Mol Biol. 2001 Aug 10;311(2):311-24. doi: 10.1006/jmbi.2001.4877. J Mol Biol. 2001. PMID: 11478863
-
Ribozyme structures and mechanisms.Annu Rev Biochem. 2000;69:597-615. doi: 10.1146/annurev.biochem.69.1.597. Annu Rev Biochem. 2000. PMID: 10966470 Review.
-
Ribozymes of the hepatitis delta virus: recent findings on their structure, mechanism of catalysis and possible applications.Acta Biochim Pol. 2001;48(2):409-18. Acta Biochim Pol. 2001. PMID: 11732611 Review.
Cited by
-
Quantitation of free energy profiles in RNA-ligand interactions by nucleotide analog interference mapping.RNA. 2003 Oct;9(10):1282-9. doi: 10.1261/rna.5102803. RNA. 2003. PMID: 13130142 Free PMC article.
-
Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples.Nucleic Acids Res. 2020 Apr 6;48(6):3304-3314. doi: 10.1093/nar/gkz1222. Nucleic Acids Res. 2020. PMID: 31930330 Free PMC article.
-
A hierarchical model for evolution of 23S ribosomal RNA.Nature. 2009 Feb 19;457(7232):977-80. doi: 10.1038/nature07749. Nature. 2009. PMID: 19225518
-
Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale.Rep Prog Phys. 2005 Jan;68(1):237-270. doi: 10.1088/0034-4885/68/1/R05. Rep Prog Phys. 2005. PMID: 25152542 Free PMC article.
-
Progress and Current Challenges in Modeling Large RNAs.J Mol Biol. 2016 Feb 27;428(5 Pt A):736-747. doi: 10.1016/j.jmb.2015.11.011. Epub 2015 Nov 14. J Mol Biol. 2016. PMID: 26585404 Free PMC article. Review.