MGMT expression in murine bone marrow is a major determinant of animal survival after alkylating agent exposure
- PMID: 11276365
- DOI: 10.1089/152581601750098354
MGMT expression in murine bone marrow is a major determinant of animal survival after alkylating agent exposure
Abstract
Myelosuppression is commonly observed after alkylating agent chemotherapy due to low levels of O(6)-alkylguanine DNA alkyltransferase protein (AGT) in hematopoietic progenitors. Mice that lack AGT in all organs, O(6)-methylguanine-DNA methyltransferase gene knockout (MGMT(-/-)) mice are extremely hypersensitive to the methylating agent N-methyl-N-nitrosourea (MNU) and exhibit a 10-fold reduction in the LD(90). To determine whether bone marrow damage was the cause of the increased lethality, we transplanted 1 x 10(6) wild-type marrow into MGMT(-/-) mice and MGMT(-/-) marrow into wild-type mice and observed survival after MNU. Lethally irradiated MGMT(-/-) mice given > or = 25 mg/kg MNU 3 weeks after transplant of wild-type cells survived > 30 days (n = 11), whereas this dose was lethal to control MGMT(-/-) mice 9-12 days post treatment (n = 5). Conversely, lethally irradiated wild-type mice transplanted with MGMT(-/-) cells died after only 20-60 mg/kg MNU within 8-12 days (n = 6). No significant toxicities were found in other organs. Additionally, in an in vivo post transplant competition model, wild-type long-term repopulating cells had a > 200-fold competitive survival advantage over MGMT(-/-) cells, and after MNU treatment completely repopulated the mouse when transplanted at only one-tenth the cell number. We also observed a strong selection for transplanted marrow-derived wild-type stromal elements in the MGMT(-/-) background after drug treatment. These data indicate that alkylating agent hypersensitivity of MGMT(-/-) mice results from hematopoietic damage at the stem level. Thus, DNA repair involving AGT in hematopoietic cells is required for normal host survival following exposure to methylating and chloroethylating agents.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Research Materials
Miscellaneous