Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001:232:102-16; discussion 116-21.
doi: 10.1002/0470846658.ch8.

Genetic control of the cell proliferation-differentiation balance in the developing skull vault: roles of fibroblast growth factor receptor signalling pathways

Affiliations
Review

Genetic control of the cell proliferation-differentiation balance in the developing skull vault: roles of fibroblast growth factor receptor signalling pathways

G M Morriss-Kay et al. Novartis Found Symp. 2001.

Abstract

Activating mutations of genes encoding the transmembrane tyrosine kinase receptors fibroblast growth factor receptors (FGFRs)1-3, and haploinsufficiency of the transcription factor TWIST, cause human craniosynostosis syndromes that typically involve the coronal suture. We have investigated the functional roles of these genes in development of the coronal suture in mouse fetuses, and tested the effects of increasing FGFR signalling by applying exogenous FGF2 to the suture. The results indicate that the proliferation-differentiation balance in normal sutural development involves a gradient of extracellular FGF from the region of differentiation, in which Fgfr1 is expressed, to the sutural mesenchyme, in which low levels of FGF are associated with Fgfr2 expression in osteogenic stem cells. Experimental increase of sutural FGF levels leads to down-regulation of Fgfr2, up-regulation of Fgfr1, up-regulation of the osteogenic differentiation gene Osteopontin, and cessation of proliferation. Twist is expressed in the midsutural mesenchyme and is partially co-expressed with Fgfr2, consistent with the possibility that it is involved in maintaining proliferation through regulating transcription of Fgfr2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources