Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 20;276(16):12598-608.
doi: 10.1074/jbc.M007560200. Epub 2001 Jan 16.

Further characterization of the helicase activity of eIF4A. Substrate specificity

Affiliations
Free article

Further characterization of the helicase activity of eIF4A. Substrate specificity

G W Rogers Jr et al. J Biol Chem. .
Free article

Abstract

Eukaryotic initiation factor (eIF) 4A is the archetypal member of the DEAD box family of RNA helicases and is proposed to unwind structures in the 5'-untranslated region of mRNA to facilitate binding of the 40 S ribosomal subunit. The helicase activity of eIF4A has been further characterized with respect to substrate specificity and directionality. Results confirm that the initial rate and amplitude of duplex unwinding by eIF4A is dependent on the overall stability, rather than the length or sequence, of the duplex substrate. eIF4A helicase activity is minimally dependent on the length of the single-stranded region adjacent to the double-stranded region of the substrate. Interestingly, eIF4A is able to unwind blunt-ended duplexes. eIF4A helicase activity is also affected by substitution of 2'-OH (RNA) groups with 2'-H (DNA) or 2'-methoxyethyl groups. These observations, taken together with results from competitive inhibition experiments, suggest that eIF4A may interact directly with double-stranded RNA, and recognition of helicase substrates occurs via chemical and/or structural features of the duplex. These results allow for refinement of a previously proposed model for the mechanism of action of eIF4A helicase activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources