Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 6;276(14):10913-20.
doi: 10.1074/jbc.M010975200. Epub 2001 Jan 16.

Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences

Affiliations
Free article

Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences

Y Ramanathan et al. J Biol Chem. .
Free article

Abstract

CDK7, CDK8, and CDK9 are cyclin-dependent kinases (CDKs) that phosphorylate the C-terminal domain (CTD) of RNA polymerase II. They have distinct functions in transcription. Because the three CDKs target only serine 5 in the heptad repeat of model CTD substrates containing various numbers of repeats, we tested the hypothesis that the kinases differ in their ability to phosphorylate CTD heptad arrays. Our data show that the kinases display different preferences for phosphorylating individual heptads in a synthetic CTD substrate containing three heptamer repeats and specific regions of the CTD in glutathione S-transferase fusion proteins. They also exhibit differences in their ability to phosphorylate a synthetic CTD peptide that contains Ser-2-PO(4). This phosphorylated peptide is a poor substrate for CDK9 complexes. CDK8 and CDK9 complexes, bound to viral activators E1A and Tat, respectively, target only serine 5 for phosphorylation in the CTD peptides, and binding to the viral activators does not change the substrate preference of these kinases. These results imply that the display of different CTD heptads during transcription, as well as their phosphorylation state, can affect their phosphorylation by the different transcription-associated CDKs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources