Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 20;276(16):12918-23.
doi: 10.1074/jbc.M100515200. Epub 2001 Jan 29.

Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator

Affiliations
Free article

Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator

L Aleksandrov et al. J Biol Chem. .
Free article

Abstract

After phosphorylation by protein kinase A, gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by the interaction of ATP with its nucleotide binding domains (NBDs). Models of this gating regulation have proposed that ATP hydrolysis at NBD1 and NBD2 may drive channel opening and closing, respectively (reviewed in Nagel, G. (1999) Biochim. Biophys. Acta 1461, 263-274). However, as yet there has been little biochemical confirmation of the predictions of these models. We have employed photoaffinity labeling with 8-azido-ATP, which supports channel gating as effectively as ATP to evaluate interactions with each NBD in intact membrane-bound CFTR. Mutagenesis of Walker A lysine residues crucial for azido-ATP hydrolysis to generate the azido-ADP that is trapped by vanadate indicated a greater role of NBD1 than NBD2. Separation of the domains by limited trypsin digestion and enrichment by immunoprecipitation confirmed greater and more stable nucleotide trapping at NBD1. This asymmetry of the two domains in interactions with nucleotides was reflected most emphatically in the response to the nonhydrolyzable ATP analogue, 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP), which in the gating models was proposed to bind with high affinity to NBD2 causing inhibition of ATP hydrolysis there postulated to drive channel closing. Instead we found a strong competitive inhibition of nucleotide hydrolysis and trapping at NBD1 and a simultaneous enhancement at NBD2. This argues strongly that AMP-PNP does not inhibit ATP hydrolysis at NBD2 and thereby questions the relevance of hydrolysis at that domain to channel closing.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources