Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 18;276(20):16848-56.
doi: 10.1074/jbc.M100768200. Epub 2001 Feb 20.

The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase

Affiliations
Free article

The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase

C Schild-Poulter et al. J Biol Chem. .
Free article

Abstract

The Ku antigen (70- and 80-kDa subunits) is a regulatory subunit of DNA-dependent protein kinase (DNA-PK) that promotes the recruitment of the catalytic subunit of DNA-PK (DNA-PKcs) to DNA ends and to specific DNA sequences from which the kinase is activated. Ku and DNA-PKcs plays essential roles in double-stranded DNA break repair and V(D)J recombination and have been implicated in the regulation of specific gene transcription. In a yeast two-hybrid screen of a Jurkat T cell cDNA library, we have identified a specific interaction between the 70-kDa subunit of Ku heterodimer and the homeodomain of HOXC4, a homeodomain protein expressed in the hematopoietic system. Unexpectedly, a similar interaction with Ku was observed for several additional homeodomain proteins including octamer transcription factors 1 and 2 and Dlx2, suggesting that specific binding to Ku may be a property shared by many homeodomain proteins. Ku-homeodomain binding was mediated through the extreme C terminus of Ku70 and was abrogated by amino acid substitutions at Lys595/Lys596. Ku binding allowed the recruitment of the homeodomain to DNA ends and dramatically enhanced the phosphorylation of homeodomain-containing proteins by DNA-PK. These results suggest that Ku functions as a substrate docking protein for signaling by DNA-PK to homeodomain proteins from DNA ends.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources