Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 6;66(7):2232-9.
doi: 10.1021/jo0011282.

N(1)-C(5')-linked dimer hydrates of 5-substituted uracils produced by anodic oxidation in aqueous solution

Affiliations

N(1)-C(5')-linked dimer hydrates of 5-substituted uracils produced by anodic oxidation in aqueous solution

H Hatta et al. J Org Chem. .

Abstract

Electrochemical dimerization reactivity has been studied for 5-substituted uracils (5XU) including thymine (1a: X = Me) and 5-halouracil derivatives (1b: X = F; 1c: X = Cl; 1d: X = Br; 1e: X = I). Upon galvanostatic electrolysis of Ar-saturated aqueous solution 1a underwent anodic oxidation to produce N(1)-C(5')- and N(1)-C(6')-linked dimer hydrates, 1-(6'-hydroxy-5',6'-dihydrothymin-5'-yl)thymine (5a) and 1-(5'-hydroxy-5',6'-dihydrothymin-6'-yl)thymine (6a), as the major products. These N-C-linked dimerizations were accompanied by the formation of novel stereoisomeric C(5)-C(5')-linked dimers (meso isomer: 13a[meso]; racemic isomer: 13a[rac]) with a condensed tetrahydrofuran ring skeleton. Similar electrolyses of 5-fluorouracil (1b) and 5-chlorouracil (1c) also afforded the corresponding N(1)-C(5')-linked dimer hydrates, 1-(5'-fluoro-6'-hydroxy-5',6'-dihydrouracil-5'-yl)-5-fluorouracil (5b) and 1-(5'-chloro-6'-hydroxy-5',6'-dihydrouracil-5'-yl)-5-chlorouracil (5c), respectively, while resulting in neither N(1)-C(6')-linked dimer analogues nor C(5)-C(5')-linked dimers, unlike the reactivity of 1a. In contrast to 1a-c, no dimeric products were obtained from 5-bromouracil (1d) and 5-iodouracil (1e). The present electrochemical method was applicable to the cross-dimerization into N(1)-C(5')-linked heterodimer hydrates composed of binary 5-substituted uracils that occurred in competition with the formation of homodimer hydrates. A mechanism of the N(1)-C(5')-linked dimerization of 1a-c has been proposed, by which allyl-type radical intermediates with limiting mesomeric forms of N(1)-centered and C(5)-centered pyrimidine radicals (2a-c [N(1)]/2a-c [C(5)]) are generated via anodic one-electron oxidation and subsequent deprotonation at N(1) and undergo a head-to-tail coupling.

PubMed Disclaimer

Publication types

LinkOut - more resources