Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 23;416(1-2):19-24.
doi: 10.1016/s0014-2999(01)00858-5.

Steroids affect collateral sensitivity to gemcitabine of multidrug-resistant human lung cancer cells

Affiliations

Steroids affect collateral sensitivity to gemcitabine of multidrug-resistant human lung cancer cells

A M Bergman et al. Eur J Pharmacol. .

Abstract

Gemcitabine is phosphorylated by deoxycytidine kinase and thymidine kinase 2 and during S-phase incorporated into DNA. The steroids cortisol and dexamethasone, which regulate cell proliferation and gene expression, are pumped out of the cell by the membrane efflux pumps P-glycoprotein and multidrug resistance-associated protein (MRP), which are blocked by verapamil. In parental non-small cell lung cancer (NSCLC) cells (SW1573), 5 microM cortisol and 100 nM dexamethasone decreased sensitivity to gemcitabine. However, both cortisol and dexamethasone only decreased sensitivity with verapamil in MRP (2R120) and P-glycoprotein (2R160) overexpressing variants. Cortisol decreased deoxycytidine kinase activity in SW1573 cells and cortisol with verapamil in 2R120 and 2R160 cells. Dexamethasone with verapamil decreased deoxycytidine kinase activity in 2R160. Cortisol decreased thymidine kinase 2 activity in 2R120 and 2R160 cells. Dexamethasone decreased thymidine kinase 2 activity in SW1573, 2R120 and 2R160 cells. In conclusion, since dexamethasone is frequently used to treat side effects of oncolytic therapy, a decrease of sensitivity to gemcitabine by steroids might be clinically relevant.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources