Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2001 Mar;163(4):892-8.
doi: 10.1164/ajrccm.163.4.2007026.

Effects of hyperoxia on ventilatory limitation during exercise in advanced chronic obstructive pulmonary disease

Affiliations
Clinical Trial

Effects of hyperoxia on ventilatory limitation during exercise in advanced chronic obstructive pulmonary disease

D E O'Donnell et al. Am J Respir Crit Care Med. 2001 Mar.

Abstract

We studied interrelationships between exercise endurance, ventilatory demand, operational lung volumes, and dyspnea during acute hyperoxia in ventilatory-limited patients with advanced chronic obstructive pulmonary disease (COPD). Eleven patients with COPD (FEV(1.0) = 31 +/- 3% predicted, mean +/- SEM) and chronic respiratory failure (Pa(O(2)) 52 +/- 2 mm Hg, Pa(CO(2 ))48 +/- 2 mm Hg) breathed room air (RA) or 60% O(2) during two cycle exercise tests at 50% of their maximal exercise capacity, in randomized order. Endurance time (T(lim)), dyspnea intensity (Borg Scale), ventilation (V E), breathing pattern, dynamic inspiratory capacity (IC(dyn)), and gas exchange were compared. Pa(O(2)) at end-exercise was 46 +/- 3 and 245 +/- 10 mm Hg during RA and O(2), respectively. During O(2), T(lim) increased 4.7 +/- 1.4 min (p < 0.001); slopes of Borg, V E, V CO(2), and lactate over time fell (p < 0.05); slopes of Borg-V E, V E-V CO(2), V E-lactate were unchanged. At a standardized time near end-exercise, O(2) reduced dyspnea 2.0 +/- 0.5 Borg units, V CO(2) 0.06 +/- 0.03 L/min, V E 2.8 +/- 1.0 L/min, and breathing frequency 4.4 +/- 1.1 breaths/min (p < 0.05 each). IC(dyn) and inspiratory reserve volume (IRV) increased throughout exercise with O(2) (p < 0.05). Increased IC(dyn) was explained by the combination of increased resting IRV and decreased exercise breathing frequency (r(2) = 0.83, p < 0.0005). In conclusion, improved exercise endurance during hyperoxia was explained, in part, by a combination of reduced ventilatory demand, improved operational lung volumes, and dyspnea alleviation.

PubMed Disclaimer

Publication types