Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;147(Pt 4):1017-1024.
doi: 10.1099/00221287-147-4-1017.

Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG

Affiliations
Free article

Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG

Min Rao et al. Microbiology (Reading). 2001 Apr.
Free article

Abstract

Mycobacteria are likely to encounter acidic pH in the environments they inhabit; however intracellular pH homeostasis has not been investigated in these bacteria. In this study, Mycobacterium smegmatis and Mycobacterium bovis [Bacille Calmette--Guérin (BCG)] were used as examples of fast- and slow-growing mycobacteria, respectively, to study biochemical and physiological responses to acidic pH. M. smegmatis and M. bovis BCG were able to grow at pH values of 4.5 and 5.0, respectively, suggesting the ability to regulate internal pH. Both species of mycobacteria maintained their internal pH between pH 6.1 and 7.2 when exposed to decreasing external pH and the maximum Delta pH observed was approximately 2.1 to 2.3 units for both bacteria. The Delta pH of M. smegmatis at external pH 5.0 was dissipated by protonophores (e.g. carbonyl cyanide m-chlorophenylhydrazone), ionophores (e.g. monensin and nigericin) and N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the proton-translocating F(1)F(0)-ATPase. These results demonstrate that permeability of the cytoplasmic membrane to protons and proton extrusion by the F(1)F(0)-ATPase plays a key role in maintaining internal pH near neutral. Correlations between measured internal pH and cell viability indicated that the lethal internal pH for both strains of mycobacteria was less than pH 6.0. Compounds that decreased internal pH caused a rapid decrease in cell survival at acidic pH, but not at neutral pH. These data indicate that both strains of mycobacteria exhibit intracellular pH homeostasis and this was crucial for the survival of these bacteria at acidic pH values.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources