Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP
- PMID: 11285260
- DOI: 10.1074/jbc.M011383200
Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP
Abstract
The function of the Ras guanine nucleotide exchange factor Ras-GRF/cdc25(Mn) is subject to tight regulatory processes. We have recently shown that the activation of the Ras/MAPK pathway by Ras-GRF is controlled by the Rho family GTPase Cdc42 through still unknown mechanisms. Here, we report that retaining Cdc42 in its GDP-bound state by overexpressing Rho-GDI inhibits Ras-GRF-mediated MAPK activation. Conversely, Ras-GRF basal and LPA- or ionomycin-stimulated activities were unaffected by a constitutively active GTP-bound Cdc42. Moreover, the Cdc42 downstream effectors MLK3, ACK1, PAK1, and WASP had no detectable influence on Ras-GRF-mediated MAPK activation. In contrast, promoting GDP release from Cdc42 with the Rho family GEF Dbl or with ionomycin suppressed the restraint exerted by Cdc42 on Ras-GRF activity. We conclude that Cdc42-GDP inhibits Ras-GRF-induced MAPK activation, but neither Cdc42-GTP nor the Cdc42 downstream effectors affect Ras-GRF performance. Interestingly, the loss of the GDP-bound state by Cdc42 abolishes its inhibitory effects on Ras-GRF function. These results suggest that the Cdc42 mechanism of action may not be solely restricted to activation of downstream signaling cascades when GTP-loaded. Furthermore, the GDP-bound form may be acting as an inhibitory molecule down-modulating parallel signaling routes such as the Ras/MAPK pathway.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous