Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr;72(4):279-86.
doi: 10.1006/mgme.2001.3150.

Simpson Golabi Behmel syndrome: progress toward understanding the molecular basis for overgrowth, malformation, and cancer predisposition

Affiliations
Review

Simpson Golabi Behmel syndrome: progress toward understanding the molecular basis for overgrowth, malformation, and cancer predisposition

M R DeBaun et al. Mol Genet Metab. 2001 Apr.

Abstract

Simpson Golabi Behmel syndrome (SGBS) is a complex congenital overgrowth syndrome with features that include macroglossia, macrosomia, and renal and skeletal abnormalities as well as an increased risk of embryonal cancers. Most cases of SGBS appear to arise as a result of either deletions or point mutations within the glypican-3 (GPC3) gene at Xq26, one member of a multigene family encoding for at least six distinct glycosylphophatidylinositol-linked cell surface heparan sulfate proteoglycans. As a class of molecules, heparan sulfate proteoglycans have been found to play essential roles in development by modulating cellular responses to growth factors and morphogens. Specifically, mutations in both the murine GPC3 gene and the Drosophila glypican, dally, have been found to modify cellular responses to bone morphogenetic proteins, providing important clues to the molecular basis of SGBS in humans. Despite these advances, there remains a paucity of information about the natural history of SGBS and optimal medical management strategies, and whether select mutations influence the SGBS phenotype and risk of cancer. To this end, an International SGBS Registry has been created and is being maintained to improve the clinical care and understanding of the pathogenesis of SGBS. Using an integrated approach employing epidemiology, molecular genetic characterization of specific GPC3 mutations, and the use of model organisms should rapidly expand the understanding of this complex disorder.

PubMed Disclaimer

Publication types

LinkOut - more resources