Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;85(4):1368-76.
doi: 10.1152/jn.2001.85.4.1368.

Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?

Affiliations
Free article

Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?

H X Chen et al. J Neurophysiol. 2001 Apr.
Free article

Abstract

Calcium/calmodulin-dependent protein kinase II (CaMKII) is concentrated in the postsynaptic density (PSD) and plays an important role in the induction of long-term potentiation (LTP). Because this kinase is persistently activated after the induction, its activity could also be important for LTP maintenance. Experimental tests of this hypothesis, however, have given conflicting results. In this paper we further explore the role of postsynaptic CaMKII in induction and maintenance of LTP. Postsynaptic application of a CaMKII inhibitor [autocamtide-3 derived peptide inhibitor (AC3-I), 2 mM] blocked LTP induction but had no detectable affect on N-methyl-D-aspartate (NMDA)-mediated synaptic transmission, indicating that the primary function of CaMKII in LTP is downstream from NMDA channel function. We next explored various methodological factors that could account for conflicting results on the effect of CaMKII inhibitors on LTP maintenance. In contrast to our previous work, we now carried out experiments at higher temperature (33 degrees C), used slices from adult animals, and induced LTP using a tetanic stimulation. However, we still found that LTP maintenance was not affected by postsynaptic application of AC3-I. Furthermore the inhibitor did not block LTP maintenance under conditions designed to enhance the Ca(2+)-dependent activity of protein phosphatases 1 and 2B (elevated Ca(2+), calmodulin, and an inhibitor of protein kinase A). We also tested the possibility that CaMKII inhibitor might not be able to affect CaMKII once it was inserted into the PSD. In whole-brain extracts, AC3-I blocked autophosphorylation of both soluble and particulate/PSD CaMKII with similar potencies although the potency of the inhibitor toward other CaMKII substrates varied. Thus we were unable to demonstrate a functional role of persistent Ca(2+)-independent CaMKII activity in LTP maintenance. Possible explanations of the data are discussed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources