Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 15;276(24):21458-63.
doi: 10.1074/jbc.M100561200. Epub 2001 Apr 4.

Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin

Affiliations
Free article

Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin

C Riedel et al. J Biol Chem. .
Free article

Abstract

The Na(+)/I(-) symporter (NIS) is a key plasma membrane glycoprotein that mediates active I(-) transport in the thyroid gland (Dai, G., Levy, O., and Carrasco, N. (1996) Nature 379, 458-460), the first step in thyroid hormone biogenesis. Whereas relatively little is known about the mechanisms by which thyrotropin (TSH), the main hormonal regulator of thyroid function, regulates NIS activity, post-transcriptional events have been suggested to play a role (Kaminsky, S. M., Levy, O., Salvador, C., Dai, G., and Carrasco, N. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 3789-3793). Here we show that TSH induces de novo NIS biosynthesis and modulates the long NIS half-life ( approximately 5 days). In addition, we demonstrate that TSH is required for NIS targeting to or retention in the plasma membrane. We further show that NIS is a phosphoprotein and that TSH modulates its phosphorylation pattern. These results provide strong evidence of the major role played by post-transcriptional events in the regulation of NIS by TSH. Beyond their inherent interest, it is also of medical significance that these TSH-dependent regulatory mechanisms may be altered in the large proportion of thyroid cancers in which NIS is predominantly expressed in intracellular compartments, instead of being properly targeted to the plasma membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources