Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;25(3):444-9.

Prolonged ethanol treatment enhances lipopolysaccharide/phorbol myristate acetate-induced tumor necrosis factor-alpha production in human monocytic cells

Affiliations
  • PMID: 11290857

Prolonged ethanol treatment enhances lipopolysaccharide/phorbol myristate acetate-induced tumor necrosis factor-alpha production in human monocytic cells

Z Zhang et al. Alcohol Clin Exp Res. 2001 Mar.

Abstract

Background: Ethanol (EtOH) is known to alter host immune responses and cytokine production. Acute EtOH exposure can suppress tumor necrosis factor (TNF)-alpha production, which attenuates pulmonary defense against infection. Previous studies in our laboratory show that acute EtOH inhibited TNF-alpha production by a posttranscriptional process, namely suppression of TNF-alpha-converting, enzyme-mediated, ectodomain shedding. However, chronic EtOH has been shown to augment TNF-alpha production, and this has been associated with EtOH-induced liver injury. To further characterize this paradoxical effect of EtOH on TNF-alpha production, we developed an in vitro model by using Mono Mac 6 cells, a human monocytic cell line.

Methods: Mono Mac 6 cells were treated with EtOH (0-75 mM) for 1 to 7 days. TNF-alpha production was induced by lipopolysaccharide and phorbol myristate acetate and quantitated by enzyme-linked immunosorbent assay. Generation of reactive oxygen species (ROS) was assayed by using a specific fluorogenic reagent.

Results: Acute EtOH initially inhibited lipopolysaccharide/phorbol myristate acetate-induced TNF-alpha production in Mono Mac 6 cells. However, during chronic EtOH exposure, this inhibition was reversed gradually over time. By day 6 after EtOH treatment, Mono Mac 6 cells demonstrated significant up-regulation of TNF-alpha production. Moreover, chronic EtOH induced the generation of ROS in these Mono Mac 6 cells. Scavenging ROS by Mn(III)tetrakis(1-methyl-4pyridyl)porphyrin pentachloride and N-acetyl-L-cysteine attenuated chronic EtOH-enhanced TNF-alpha production.

Conclusion: These results suggest that ROS induction is involved in EtOH-enhanced TNF-alpha production by monocytes. This study also provides insight into the mechanisms of alteration of TNF-alpha production in different EtOH exposure settings.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources