Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr;13(1):71-6.
doi: 10.1016/s0928-0987(00)00209-8.

Development of gene drug delivery systems based on pharmacokinetic studies

Affiliations
Review

Development of gene drug delivery systems based on pharmacokinetic studies

Y Takakura et al. Eur J Pharm Sci. 2001 Apr.

Abstract

A series of pharmacokinetic studies following systemic or local administration for the development of delivery systems for gene drugs, such as plasmid DNA and oligonucleotides, are reviewed. The pharmacokinetics of gene drugs after intravenous injection into mice was evaluated based on clearance concepts. Pharmacokinetic analysis revealed that the overall disposition characteristics of the gene drug itself were determined by the physicochemical properties of its polyanionic DNA. Based on these findings, liver cell-specific carrier systems via receptor-mediated endocytosis were successfully developed by optimizing physicochemical characteristics. On the other hand, the pharmacokinetics of gene drugs after intratumoral injection were assessed in a tissue-isolated tumor perfusion system. The relationship between the physicochemical properties of gene drug delivery systems and intratumoral pharmacokinetics was determined and the therapeutic effect was also discussed in relation to pharmacokinetics. Collectively, it was demonstrated that a rational design of gene drug delivery systems that can control their in vivo disposition is possible by means of pharmacokinetic studies at whole body, organ and cellular levels.

PubMed Disclaimer

MeSH terms

LinkOut - more resources