In vivo-expressed genes of Pasteurella multocida
- PMID: 11292718
- PMCID: PMC98254
- DOI: 10.1128/IAI.69.5.3004-3012.2001
In vivo-expressed genes of Pasteurella multocida
Abstract
Pasteurella multocida is the causative agent of infectious diseases of economic importance such as fowl cholera, bovine hemorrhagic septicemia, and porcine atrophic rhinitis. However, knowledge of the molecular mechanisms and determinants that P. multocida requires for virulence and pathogenicity is still limited. To address this issue, we developed a genetic expression system, based on the in vivo expression technology approach first described by Mahan et al. (Science 259:686--688, 1993), to identify in vivo-expressed genes of P. multocida. Numerous genes, such as those encoding outer membrane lipoproteins, metabolic and biosynthetic enzymes, and a number of hypothetical proteins, were identified. These may prove to be useful targets for attenuating mutation and/or warrant further investigation for their roles in immunity and/or pathogenesis.
Figures
References
-
- Aldridge P, Metzger M, Geider K. Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol Gen Genet. 1997;256:611–619. - PubMed
-
- Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
-
- Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K. Current protocols in molecular biology. New York, N.Y: Greene Publishing Associates and Wiley-Interscience; 1987.
-
- Badia J, Ibanez E, Sabate M, Baldoma L, Aguilar J. A rare 920-kilobase chromosomal inversion mediated by IS1 transposition causes constitutive expression of the yiaK-S operon for carbohydrate utilization in Escherichia coli. J Biol Chem. 1998;273:8376–8381. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
