Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 22;276(25):22732-41.
doi: 10.1074/jbc.M010880200. Epub 2001 Apr 9.

Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes

Affiliations
Free article

Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes

S K Smith et al. J Biol Chem. .
Free article

Abstract

Exposure of human erythrocytes to the calcium ionophore ionomycin rendered them susceptible to the action of secretory phospholipase A(2) (sPLA(2)). Analysis of erythrocyte phospholipid metabolism by thin-layer chromatography revealed significant hydrolysis of both phosphatidylcholine and phosphatidylethanolamine during incubation with ionomycin and sPLA(2). Several possible mechanisms for the effect of ionomycin were considered. Involvement of intracellular phospholipases A(2) was excluded since inhibitors of these enzymes had no effect. Assessment of membrane oxidation by cis-parinaric acid fluorescence and comparison to the oxidants diamide and phenylhydrazine revealed that oxidation does not participate in the effect of ionomycin. Incubation with ionomycin caused classical physical changes to the erythrocyte membrane such as morphological alterations (spherocytosis), translocation of aminophospholipids to the outer leaflet of the membrane, and release of microvesicles. Experiments with phenylhydrazine, KCl, quinine, merocyanine 540, the calpain inhibitor E-64d, and the scramblase inhibitor R5421 revealed that neither phospholipid translocation nor vesicle release was required to induce susceptibility. Results from fluorescence spectroscopy and two-photon excitation scanning microscopy using the membrane probe laurdan argued that susceptibility to sPLA(2) is a consequence of increased order of membrane lipids.

PubMed Disclaimer

Publication types

LinkOut - more resources