Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 10;56(7):869-77.
doi: 10.1212/wnl.56.7.869.

Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene

Affiliations

Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene

H Haravuori et al. Neurology. .

Abstract

Background: Tibial muscular dystrophy (TMD), a late-onset dominant distal myopathy, is caused by yet unknown mutations on chromosome 2q, whereas MD with myositis (MDM) is a muscular dystrophy of the mouse, also progressing with age and linked to mouse chromosome 2. For both disorders, linkage studies have implicated titin as a potential candidate gene.

Methods: The authors analyzed major candidate regions in the titin gene by sequencing and Southern blot hybridization, and performed titin immunohistochemistry on TMD patient material to identify the underlying mutation. Western blot studies were performed on the known titin ligands in muscle samples of both disorders and controls, and analysis of apoptosis was also performed.

Results: The authors identified almost complete loss of calpain3, a ligand of titin, in the patient with limb-girdle MD (LGMD) with a homozygous state of TMD haplotype when primary calpain3 gene defect was excluded. Apoptotic myonuclei with altered distribution of transcription factor NF-kB and its inhibitor IkBalpha were encountered in muscle samples of patients with either heterozygous or homozygous TMD haplotype. Similar findings were confirmed in the MDM mouse.

Conclusions: These results imply that titin mutations may be responsible for TMD, and that the pathophysiologic pathway following calpain3 deficiency may overlap with LGMD2A. The loss of calpain3 could be a downstream effect of the deficient TMD gene product. The significance of the secondary calpain3 defect for the pathogenesis of TMD was emphasized by similar calpain3 deficiency in the MDM mouse, which is suggested to be a mouse model for TMD. Homozygous mutation at the 2q locus may thus be capable of producing yet another LGMD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources