Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Mar-Apr;83(3-4):367-72.
doi: 10.1016/s0300-9084(01)01251-2.

Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why?

Affiliations
Review

Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why?

M Groettrup et al. Biochimie. 2001 Mar-Apr.

Abstract

When cells are stimulated with the cytokines IFN-gamma or TNF-alpha, the synthesis of three proteasome subunits LMP2 (beta1i), LMP7 (beta5i), and MECL-1 (beta2i) is induced. These subunits replace the three subunits delta (beta1), MB1 (beta5), and Z (beta2), which bear the catalytically active sites of the proteasome, during proteasome neosynthesis. The cytokine-induced exchanges of three active site subunits of a complex protease is unprecedented in biology and one may expect a strong functional driving force for this system to evolve. These cytokine-induced replacements of proteasome subunits are believed to favour the production of peptide ligands of major histocompatibility complex (MHC) class I molecules for the stimulation of cytotoxic T cells. Although the peptide production by constitutive proteasomes is able to maintain peptide-dependent MHC class I cell surface expression in the absence of LMP2 and LMP7, these subunits were recently shown to be pivotal for the generation or destruction of several unique epitopes. In this review we discuss the recent data on LMP2/LMP7/MECL-1-dependent epitope generation and the functions of each of these subunit exchanges. We propose that these subunit exchanges have evolved not only to optimize class I peptide loading but also to generate LMP2/LMP7/MECL-1-dependent epitopes in inflammatory sites which are not proteolytically generated in uninflamed tissues. This difference in epitope generation may serve to better stimulate T cells in the sites of an ongoing immune response and to avoid autoimmunity in uninflamed tissues.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources