Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 15;276(24):21331-6.
doi: 10.1074/jbc.M101901200. Epub 2001 Apr 10.

Diffusion in the endoplasmic reticulum of an aquaporin-2 mutant causing human nephrogenic diabetes insipidus

Affiliations
Free article

Diffusion in the endoplasmic reticulum of an aquaporin-2 mutant causing human nephrogenic diabetes insipidus

M H Levin et al. J Biol Chem. .
Free article

Abstract

Mutations in the aquaporin-2 (AQP2) water channel cause the hereditary renal disease nephrogenic diabetes insipidus (NDI). The missense mutation AQP2-T126M causes human recessive NDI by retention at the endoplasmic reticulum (ER) of renal epithelial cells. To determine whether the ER retention of AQP2-T126M is due to relative immobilization in the ER, we measured by fluorescence recovery after photobleaching the intramembrane mobility of green fluorescent protein (GFP) chimeras containing human wild-type and mutant AQP2. In transfected LLC-PK1 renal epithelial cells, GFP-labeled AQP2-T126M was localized to the ER, and wild-type AQP2 to endosomes and the plasma membrane; both were localized to the ER after brefeldin A treatment. Photobleaching with image detection indicated that the GFP-AQP2 chimeras were freely mobile throughout the ER. Quantitative spot photobleaching revealed a diffusion-dependent irreversible process whose recovery depended on spot size and was abolished by paraformaldehyde fixation. In addition, a novel slow reversible fluorescence recovery (t(12) approximately 2 s) was characterized whose recovery was independent of spot size and not affected by fixation. AQP2 translational diffusion in the ER was not slowed by the T126M mutation; diffusion coefficients were (in cm(2)/s x 10(-)10) 2.6 +/- 0.5 (wild-type) and 3.0 +/- 0.4 (T126M). Much faster diffusion was found for a lipid probe (diOC(4)(3), 2.7 x 10(-)8 cm(2)/s) in the ER membrane and for unconjugated GFP in the aqueous ER lumen (6 x 10(-)8 cm(2)/s). ER diffusion of GFP-T126M was not significantly affected by up-regulation of molecular chaperones, cAMP activation, or actin filament disruption. ATP depletion by 2-deoxyglucose and azide resulted in comparable slowing/immobilization of wild-type and T126M AQP2. These results indicate that the ER retention of AQP2-T126M does not result from restricted or slowed mobility and suggest that the majority of AQP2-T126M is not aggregated or bound to slowly moving membrane proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources